Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this paper a mathematical model that describes macrophage infiltration into avascular tumours is presented. The qualitative accuracy of the model is assessed by comparing numerical results with independent experimental data that describe the infiltration of macrophages into two types of spheroids: chemoattractant-producing (hepa-1) and chemoattractant-deficient (or C4) spheroids. A combination of analytical and numerical techniques are used to show how the infiltration pattern depends on the motility mechanisms involved (i.e. random motion and chemotaxis) and to explain the observed differences in macrophage infiltration into the hepa-1 and C4 spheroids. Model predictions are generated to show how the spheroid's size and spatial structure and the ability of its constituent cells influence macrophage infiltration. For example, chemoattractant-producing spheroids are shown to recruit larger numbers of macrophages than chemoattractant-deficient spheroids of the same size and spatial structure. The biological implications of these results are also discussed briefly.

Original publication




Journal article


Journal of Theoretical Medicine

Publication Date





21 - 38