Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In contrast to DNA replication and transcription where nucleotides are added and matched one by one, homologous recombination by DNA strand exchange tests whole sequences for complementarity, which requires elimination of mismatched yet thermodynamically stable intermediates. To understand the remarkable sequence specificity of homologous recombination, we have studied strand exchange between a 20-mer duplex containing one single mismatch (placed at varied positions) with the matching single strand in presence of poly(ethylene glycol) representing a semi-hydrophobic environment. A FRET-based assay shows that rates and yields of strand exchange from mismatched to matched strands rapidly increase with semi-hydrophobic co-solute concentration, contrasting previously observed general strand exchange accelerating effect of ethyl glycol ethers. We argue that this effect is not caused simply by DNA melting or solvent-induced changes of DNA conformation but is more complex involving several mechanisms. The catalytic effects, we propose, involve strand invasion facilitated by reduced duplex stability due to weakened base stacking ("longitudinal breathing"). Secondly, decreased water activity makes base-pair hydrogen bonds stronger, increasing the relative energy penalty per mismatch. Finally, unstacked mismatched bases (gaps) are stabilized through partly intercalated hydrophobic co-solvent molecules, assisting nucleation of strand invasion at the point of mismatch. We speculate that nature long ago discovered, and now exploits in various enzymes, that sequence recognition power of nucleic acids may be modulated in a hydrophobic environment.

Original publication

DOI

10.1002/bip.23426

Type

Journal article

Journal

Biopolymers

Publication Date

29/03/2021

Keywords

DNA strand exchange, PEG, hydrophobic catalysis, mismatch detection