Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: A graphical user interface (GUI) was developed to aid in the assessment of changes in the radiation tolerance of spinal cord/similar central nervous system tissues with time between two individual treatment courses. METHODS: The GUI allows any combination of photons, protons (or ions) to be used as the initial, or retreatment, radiotherapy courses. Allowances for clinical circumstances, of reduced tolerance, can also be made. The radiobiological model was published previously and has been incorporated with additional checks and safety features, to be as safe to use as possible. The proton option includes use of a fixed RBE of 1.1 (set as the default), or a variable RBE, the latter depending on the proton linear energy transfer (LET) for organs at risk. This second LET-based approach can also be used for ions, by changing the LET parameters. RESULTS: GUI screenshots are used to show the input and output parameters for different clinical situations used in worked examples. The results from the GUI are in agreement with manual calculations, but the results are now rapidly available without tedious and error-prone manual computations. The software outputs provide a maximum dose limit boundary, which should not be exceeded. Clinicians may also choose to further lower the number of treatment fractions, whilst using the same dose per fraction (or conversely a lower dose per fraction but with the same number of fractions) in order to achieve the intended clinical benefit as safely as possible. CONCLUSIONS: The new GUI will allow scientific-based estimations of time related radiation tolerance changes in the spinal cord and similar central nervous tissues (optic chiasm, brainstem), which can be used to guide the choice of retreatment dose fractionation schedules, with either photons, protons or ions.

Original publication

DOI

10.1080/09553002.2021.1981554

Type

Journal article

Journal

Int J Radiat Biol

Publication Date

2021

Volume

97

Pages

1657 - 1666

Keywords

Radiobiology, ions, protons, radiotherapy, retreatment, Linear Energy Transfer, Proton Therapy, Protons, Relative Biological Effectiveness, Retreatment, Spinal Cord