Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere length maintenance mechanism that enables the unlimited proliferation of a subset of cancer cells. Some neuroblastoma (NB) tumors appear to maintain telomere length by activating ALT. Of 40 NB cell lines, we identified four potential ALT cell lines (CHLA-90, SK-N-FI, LA-N-6, and COG-N-291) that were telomerase-negative and had long telomeres (a feature of ALT cells). All four cell lines lacked MYCN amplification and were p53 non-functional upon irradiation. Two of these cell lines (CHLA-90 and SK-N-FI) were positive for C-circles (telomeric DNA circles) and ALT-associated promyelocytic leukemia nuclear bodies, both of which are phenotypic characteristics of ALT. Mutation of ATRX (associated with ALT in tumors) was only found in CHLA-90. Thus, the ALT phenotype in NB may not be limited to tumors with ATRX mutations but is associated with a lack of MYCN amplification and alterations in the p53 pathway. © 2014 Springer Science+Business Media.

Original publication

DOI

10.1007/s11060-014-1456-8

Type

Journal article

Journal

Journal of Neuro-Oncology

Publication Date

01/01/2014

Volume

119

Pages

17 - 26