Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cryptococcosis is primarily caused by Cryptococcus neoformans and Cryptococcus gattii. These two pathogenic species each divide into four distinct molecular genotypes. In this study, we examined whether genotype influenced susceptibility to antifungal drugs used to treat cryptococcosis using the broth microdilution method described by the Clinical and Laboratory Standards Institute. C. gattii isolates belonging to molecular genotype VGII had significantly higher MIC values for flucytosine and all azole antifungal agents tested, particularly fluconazole, than isolates of other C. gattii genotypes. In an extended analysis of fluconazole susceptibility, VGII isolates from the north and west of Australia required higher drug levels for inhibition than those from Vancouver Island, Canada. Within C. neoformans, genotype VNII had significantly lower geometric mean MICs for fluconazole than genotype VNI. These results indicate that cryptococcal species, molecular genotype, and region of origin may be important when deciding treatment options for cryptococcosis. Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Original publication




Journal article


Journal of Clinical Microbiology

Publication Date





4115 - 4120