Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are thought to play an important role in the vascularization of damaged tissues and cancers. These cells are also required for tissue-engineered blood vessels and to help skin substitutes revascularize more efficiently. A standard approach to the phenotyping and enumeration of CEC and EPC is key to the development of new therapies, and the identification of biomarkers within the blood that regulate their levels may be important for the treatment of cancer. We have devised an improved multiparameter flow cytometric assay for CEC and circulating EPC enumeration. This assay uses antibodies recognizing CD133 and CD34 to identify EPC and CEC, respectively, and incorporates specific markers CD144 and vascular endothelial growth factor receptor 2 (VEGFR-2) for both CEC and EPC cells. In peripheral blood (PB), mean CEC numbers were 55 +/- 95 mL(-1) and mean EPC numbers were 44 +/- 58 mL(-1) (n = 60). We also found a significant correlation of both plasma VEGF (r = 0.90, p < 0.001) and CXCL12 (r = 0.84, p < 0.001) with EPCs, but not CECs. The cytokines also correlated with each other (r = 0.85, p < 0.001). In umbilical cord blood (UCB) we found on average 13 times more CEC (719 +/- 338 mL(-1)) and 7 times more EPC (299 +/- 245 mL(-1)) than in PB. However, serum VEGF and CXCL12 levels in UCB did not correlate with either EPC or CEC numbers. These results suggest a major role for VEGF and CXCL12 in the control of marrow-derived EPCs in adult PB and provide normal data for comparison with patient populations.

Original publication




Journal article


Tissue Eng Part C Methods

Publication Date





59 - 67


AC133 Antigen, Antigens, CD, Antigens, CD34, Cadherins, Cells, Cultured, Chemokine CXCL12, Cytokines, Endothelial Cells, Fetal Blood, Glycoproteins, Humans, Models, Biological, Neovascularization, Physiologic, Peptides, Stem Cells, Umbilical Veins, Vascular Endothelial Growth Factor A