Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumour cells exploit both genetic and adaptive means to survive and proliferate in hypoxic microenvironments, resulting in the outgrowth of more aggressive tumour cell clones. Direct measurements of tumour oxygenation, and surrogate markers of the hypoxic response in tumours (for instance, hypoxia inducible factor-1alpha, carbonic anhydrase 9 and glucose transporter-1) are well-established prognostic markers in solid cancers. However, individual markers do not fully capture the complex, dynamic and heterogeneous hypoxic response in cancer. To overcome this, expression profiling has been employed to identify hypoxia signatures in cohorts or models of human cancer. Several of these hypoxia signatures have demonstrated prognostic significance in independent cancer datasets. Nevertheless, individual hypoxia markers have been shown to predict the benefit from hypoxia-modifying or anti-angiogenic therapies. This review aims to discuss the clinical impact of translational work on hypoxia markers and to explore future directions for research in this area.

Original publication




Journal article


J Cell Mol Med

Publication Date





18 - 29


Biomarkers, Tumor, Carbonic Anhydrases, Cell Hypoxia, Gene Expression Profiling, Humans, Hypoxia-Inducible Factor 1, alpha Subunit, Kaplan-Meier Estimate, MicroRNAs, Necrosis, Neoplasms, Prognosis, Treatment Outcome