Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Inflammatory breast cancer is a distinct and aggressive form of locally advanced breast cancer with unique clinical and pathological features. Recently, histologic evidence of intense angiogenesis was found in inflammatory breast cancer specimens. The aim of this study was to confirm the angiogenic phenotype of inflammatory breast cancer and to investigate its potential to induce lymphangiogenesis. EXPERIMENTAL DESIGN: Real-time quantitative reverse transcriptase-PCR was used to measure levels of mRNA of tumor angiogenesis and lymphangiogenesis-related factors [vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF-D, Flt-1, KDR, Flt-4, Ang-1, Ang-2, Tie-1, Tie-2, cyclooxygenase-2, fibroblast growth factor-2 (FGF-2), Egr-1, Prox-1, and LYVE-1] in tumor specimens of 16 inflammatory breast cancer and 20 noninflammatory breast cancer patients. Tissue microarray technology and immunohistochemistry were used to study differential protein expression of some of the angiogenic factors in inflammatory breast cancer and noninflammatory breast cancer. Active lymphangiogenesis was further assessed by measuring lymphatic endothelial cell proliferation. RESULTS: Inflammatory breast cancer specimens had significantly higher mRNA expression levels than noninflammatory breast cancer specimens of the following genes: KDR (P = 0.033), Ang-1, (P = 0.0001), Tie-1 (P = 0.001), Tie-2 (P = 0.001), FGF-2 (P = 0.002), VEGF-C (P = 0.001), VEGF-D (P = 0.012), Flt-4 (P = 0.001), Prox-1 (P = 0.005), and LYVE-1 (P = 0.013). High mRNA levels of FGF-2 and cyclooxygenase-2 corresponded to increased protein expression by immunohistochemistry. Inflammatory breast cancer specimens contained significantly higher fractions of proliferating lymphatic endothelial cells than noninflammatory breast cancer specimens (P = 0.033). CONCLUSIONS: Using real-time quantitative reverse transcriptase-PCR and immunohistochemistry, we confirmed the intense angiogenic activity in inflammatory breast cancer and demonstrated the presence of active lymphangiogenesis in inflammatory breast cancer. This may help explain the high metastatic potential of inflammatory breast cancer by lymphatic and hematogenous route. Both pathways are potential targets for the treatment of inflammatory breast cancer.

Original publication




Journal article


Clin Cancer Res

Publication Date





7965 - 7971


Adult, Aged, Aged, 80 and over, Biomarkers, Tumor, Breast Neoplasms, Cell Proliferation, Endothelium, Vascular, Female, Gene Expression Regulation, Neoplastic, Humans, Inflammation, Lymph Nodes, Lymphangiogenesis, Middle Aged, Neovascularization, Pathologic, Prognosis, RNA, Messenger, RNA, Neoplasm, Reverse Transcriptase Polymerase Chain Reaction