Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT-derived machine learning (ML) models for predicting outcome in patients with cHL. METHODS: All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator characteristic analysis was used to assess performance. RESULTS: A total of 289 patients (153 males), median age 36 (range 16-88 years), were included. There was no significant difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01 and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume and clinical features or the highest performing radiomic model. CONCLUSIONS: Outcome prediction using pre-treatment FDG PET/CT-derived ML models is feasible in cHL patients. Further work is needed to determine optimum predictive thresholds for clinical use. KEY POINTS: • A fixed threshold segmentation method led to more robust radiomic features. • A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible. • A predictive model based on ridge regression was the best performing model on our dataset.

Original publication

DOI

10.1007/s00330-022-09039-0

Type

Journal article

Journal

Eur Radiol

Publication Date

10/2022

Volume

32

Pages

7237 - 7247

Keywords

Hodgkin disease: positron emission tomography computed tomography, Machine learning, progression-free survival, Adolescent, Adult, Aged, Aged, 80 and over, Fluorodeoxyglucose F18, Hodgkin Disease, Humans, Machine Learning, Male, Middle Aged, Neoplasm Recurrence, Local, Positron Emission Tomography Computed Tomography, Positron-Emission Tomography, Retrospective Studies, Young Adult