Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In mammalian cells, single-base lesions, such as uracil and abasic sites, appear to be repaired by at least two base excision repair (BER) subpathways: "single-nucleotide BER" requiring DNA synthesis of just one nucleotide and "long patch BER" requiring multi-nucleotide DNA synthesis. In single-nucleotide BER, DNA polymerase beta (beta-pol) accounts for both gap filling DNA synthesis and removal of the 5'-deoxyribose phosphate (dRP) of the abasic site, whereas the involvement of various DNA polymerases in long patch BER is less well understood. Recently, we found that beta-pol plays a role in mammalian cell extract-mediated long patch BER, in that formation of a key excision product, 5'-dRP-trinucleotide (5'-dRP-N(3)), is dependent upon beta-pol (Dianov, G. L., Prasad, R., Wilson, S. H., and Bohr, V.A. (1999) J. Biol. Chem. 274, 13741-13743). The structure-specific endonuclease flap endonuclease 1 (FEN1) has also been suggested to be involved in long patch BER excision. Here, we demonstrate by immunodepletion experiments that 5'-dRP-N(3) excision in long patch BER of uracil-DNA in a human lymphoid cell extract is, indeed, dependent upon FEN1. Next, we reconstituted the excision step of long patch BER using purified human proteins and an oligonucleotide substrate with 5'-dRP at the margin of a one-nucleotide gap. Formation of the excision product 5'-dRP-N(3) was dependent upon both strand displacement DNA synthesis by beta-pol and FEN1 excision. FEN1 stimulated strand displacement DNA synthesis of beta-pol. FEN1 acting either alone, or without DNA synthesis by beta-pol, produced a two-nucleotide excision product, 5'-dRP-N(1), but not 5'-dRP-N(3). These results demonstrate that human FEN1 and beta-pol can cooperate in long patch BER excision and specify the predominant excision product seen with a cell extract.

Type

Journal article

Journal

J Biol Chem

Publication Date

11/02/2000

Volume

275

Pages

4460 - 4466

Keywords

Cell Line, DNA, DNA Polymerase beta, DNA Repair, Exodeoxyribonuclease V, Exodeoxyribonucleases, Flap Endonucleases, Humans, Nucleotides, Ribosemonophosphates