CLIP-50 immunolocalization during mouse spermiogenesis suggests a role in shaping the sperm nucleus.
Tarsounas M., Pearlman RE., Moens PB.
The spermatid nucleus and cytoplasm undergo dramatic morphological modifications during spermatid differentiation into mature sperm. Some of the external force causing this nuclear shaping is generated by a microtubular structure termed the manchette, which attaches to the perinuclear ring of the spermatid. Here, we report the isolation and characterization of a protein component of this perinuclear ring in an immunological screening of a mouse testis cDNA library. We termed this protein CLIP-50 because of its high similarity at the amino acid level to the C-terminal region of the microtubule-binding protein CLIP-170/restin. CLIP-50 lacks the characteristic microtubule-binding motif, but retains a portion of the predicted coiled-coiled domain and the metal-binding motif. The CLIP-50 transcript and protein are abundant in testis. The protein is also expressed in heart, lung, kidney, and skin. A distinct size variant exists in brain. In the spermatids, CLIP-50 protein localizes specifically to the centriolar region where the sperm tail originates and to the perinuclear ring from which the manchette emerges. CLIP-50 staining is retained in the ring throughout its migration over the surface of the nucleus which accompanies the nuclear shaping into its characteristic sperm configuration. This localization pattern indicates a very specific function for this novel CLIP derivative during mouse spermiogenesis.