Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A major DNA lesion is the strongly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) base, formed by oxidative attack at guanine and which leads to a high level of G.C-->T.A transversions. Clustered DNA damages are formed in DNA following exposure to ionizing radiation or radiomimetic anticancer agents and are thought to be biologically severe. The presence of 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell, if the OGG1 DNA glycosylase/AP lyase protein, present in eukaryotic cells, does not efficiently excise its substrate, 8-oxoG. In this study, specific oligonucleotide constructs containing an 8-oxoG located in several positions opposite to another damage (5,6-dihydrothymine (DHT), uracil, 8-oxoG, AP site, or various types of single strand breaks) were used to determine the relative efficiency of purified human OGG1 and mammalian XRS5 nuclear extracts to excise 8-oxoG from clustered damages. A base damage (DHT, uracil, and 8-oxoG) on the opposite strand has little or no influence on the rate of excision of 8-oxoG whereas the presence of either an AP site or various types of single strand breaks has a strong inhibitory effect on the formation of a SSB due to the excision of 8-oxoG by both hOGG1 and the nuclear extract. The binding of hOGG1 to 8-oxoG is not significantly affected by the presence of a neighboring lesion.


Journal article



Publication Date





11811 - 11818


Cell Nucleus, DNA Damage, DNA-Formamidopyrimidine Glycosylase, Deoxyguanosine, Humans, Kinetics, N-Glycosyl Hydrolases