BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression.
MacLachlan TK., Somasundaram K., Sgagias M., Shifman Y., Muschel RJ., Cowan KH., El-Deiry WS.
The breast and ovarian cancer susceptibility gene product BRCA1 has been reported to be expressed in a cell cycle-dependent manner; possess transcriptional activity; associate with several proteins, including the p53 tumor suppressor; and play an integral role in certain types of DNA repair. We show here that ectopic expression of BRCA1 using an adenovirus vector (Ad-BRCA1) leads to dephosphorylation of the retinoblastoma protein accompanied by a decrease in cyclin-dependent kinase activity. Flow cytometric analysis on Ad-BRCA1-infected cells revealed a G(1) or G(2) phase accumulation. High density cDNA array screening of colon, lung, and breast cancer cells identified several genes affected by BRCA1 expression in a p53-independent manner, including DNA damage response genes and genes involved in cell cycle control. Notable changes included induction of the GADD45 and GADD153 genes and a reduction in cyclin B1 expression. Therefore, BRCA1 has the potential to modulate the expression of genes and function of proteins involved in cell cycle control and DNA damage response pathways.