Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Functional MRI (fMRI) exploits a relationship between neuronal activity, metabolism, and cerebral blood flow to functionally map the brain. We have developed a model of direct cortical stimulation in the rat that can be combined with fMRI and used to compare the hemodynamic responses to direct and indirect cortical stimulation. Unilateral electrical stimulation of the rat hindpaw motor cortex, via stereotaxically positioned carbon-fiber electrodes, yielded blood oxygenation level-dependent (BOLD) fMRI signal changes in both the stimulated and homotypic contralateral motor cortices. The maximal signal intensity change in both cortices was similar (stimulated = 3.7 +/- 1.7%; contralateral = 3.2 +/- 1.0%), although the response duration in the directly stimulated cortex was significantly longer (48.1 +/- 5.7 sec vs. 19.0 +/- 5.3 sec). Activation of the contralateral cortex is likely to occur via stimulation of corticocortical pathways, as distinct from direct electrical stimulation, and the response profile is similar to that observed in remote (e.g., forepaw) stimulation fMRI studies. Differences in the neuronal pool activated, or neurovascular mediators released, may account for the more prolonged BOLD response observed in the directly stimulated cortex. This work demonstrates the combination of direct cortical stimulation in the rat with fMRI and thus extends the scope of rodent fMRI into brain regions inaccessible to peripheral stimulation techniques.

Original publication




Journal article


Magn Reson Med

Publication Date





838 - 847


Animals, Brain, Electric Stimulation, Feasibility Studies, Magnetic Resonance Imaging, Models, Animal, Neuronal Plasticity, Rats, Rats, Sprague-Dawley