Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: To investigate the utility of hyperpolarized xenon-129 (HPX) gas-exchange magnetic resonance imaging (MRI) and modeling in a chronic obstructive pulmonary disease (COPD) cohort in comparison to a minimal CT-diagnosed emphysema (MCTE) cohort and a healthy cohort. METHODS: A total of 25 subjects were involved in this study including COPD (n = 8), MCTE (n = 3), and healthy (n = 14) subjects. The COPD subjects were scanned using HPX ventilation, gas-exchange MRI, and volumetric CT. The healthy subjects were scanned using the same HPX gas-exchange MRI protocol with 9 of them scanned twice, 3 weeks apart. The coefficient of variation (CV) was used to quantify image heterogeneities. A three-dimensional computational fluid dynamic (CFD) model of gas exchange was used to derive functional volumes of pulmonary tissue, capillaries, and veins. RESULTS: The CVs of gas distributions in the images showed that there was a statistically significant difference between the COPD and healthy subjects (p < 0.0001). The functional volumes of pulmonary tissue, capillaries, and veins were significantly lower in the subjects with COPD than in the healthy subjects (p < 0.001). The functional volume of pulmonary tissue was found to be (i) statistically different between the healthy and MCTE groups (p = 0.02) and (ii) dependent on the age of the subjects in the healthy group (p = 0.0008) while their CVs (p = 0.13) were not. CONCLUSION: The novel HPX gas-exchange MRI and CFD model distinguished the healthy cohort from the MCTE and COPD cohorts. The proposed technique also showed that the functional volume of pulmonary tissue decreases with aging in the healthy group. KEY POINTS: • The ventilation and gas-exchange imaging with hyperpolarized xenon-129 MRI has enabled the identification of gas-exchange variation between COPD and healthy groups. • This novel technique was promising to be sensitive to minimal CT-diagnosed emphysema and age-related changes in gas-exchange parameter in a small pilot cohort.

Original publication

DOI

10.1007/s00330-022-09343-9

Type

Journal article

Journal

Eur Radiol

Publication Date

05/2023

Volume

33

Pages

3322 - 3331

Keywords

Chronic obstructive pulmonary disease, Computational modeling, Lung, Magnetic resonance imaging, Pulmonary function tests, Humans, Lung, Pulmonary Disease, Chronic Obstructive, Magnetic Resonance Imaging, Pulmonary Emphysema, Emphysema, Xenon