Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Assess the safety and feasibility of shortened hypofractionated high-dose palliative lung radiotherapy in a retrospective planning study. METHODS: Fifteen late stage (III or IV) NSCLC lung radiotherapy patients previously treated with the standard palliative 36 Gy in 12 fractions (12F) schedule were non-randomly selected to achieve a representative distribution of tumour sizes, volumes, and location. Plans were produced using 30 Gy in 5 fractions (5F) and 6 fractions (6F) using a 6MV FFF co-planar VMAT technique. Plans were optimised to meet dose-constraints for planning target volumes (PTVs) and organs at risk (OARs) with established OAR constraints expressed as biological equivalent doses (BEDs). The potential safety was assessed using these BEDs and also with reductions of 10% (BED-10%) and 20% (BED-20%) to account for a reduction in tolerance doses from the effects of chemotherapy or surgery. RESULTS: Mandatory BED constraints were met for all fifteen 5F and 6F plans; BED-10% constraints were met by all 6F plans and six 5F plans. BED-20% constraints were met by six 6F and three 5F respectively. CONCLUSION: It is potentially safe and feasible to deliver high-dose palliative radiotherapy for late stage NSCLC using the 5F or 6F regimes described, when planned to comparable OAR BEDs as standard radical techniques. It appears toxicity from these regimes should be within acceptable limits provided the dose-constraints described are met. A Phase II study is required to fully assess safety and feasibility, the outcomes of which could reduce the number of patient hospital visits for radiotherapy, thereby benefiting patients and optimising resource utilisation.

Original publication

DOI

10.1016/j.ejmp.2023.102559

Type

Journal article

Journal

Phys Med

Publication Date

04/2023

Volume

108

Keywords

Hypofractionated, Lung radiotherapy, Palliative, Humans, Radiotherapy Dosage, Retrospective Studies, Feasibility Studies, Radiotherapy, Intensity-Modulated, Radiotherapy Planning, Computer-Assisted, Carcinoma, Non-Small-Cell Lung, Lung, Lung Neoplasms, Organs at Risk