Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The immune system is a complex network of multiple cells, tissues, and organs that protects the body against foreign pathogenic invaders. However, the immune system may mistakenly attack healthy cells and tissues due to the cross-reactivity of anti-pathogen immunity, leading to autoimmunity by autoreactive T cells and/or autoantibody-secreting B cells. Autoantibodies can accumulate, resulting in tissue or organ damage. The neonatal crystallizable fragment receptor (FcRn) is an important factor in immune regulation through controlling the trafficking and recycling of immunoglobulin G (IgG) molecules, the most abundant antibody in humoral immunity. In addition to its role in IgG trafficking and recycling, FcRn is also involved in antigen presentation, which is a crucial step in the activation of the adaptive immune response via directing the internalization and trafficking of antigen-bound IgG immune complexes into compartments of degradation and presentation in antigen-presenting cells. Efgartigimod, an FcRn inhibitor, has shown promise in reducing the levels of autoantibodies and alleviating the autoimmune severity of myasthenia gravis, primary immune thrombocytopenia, and pemphigus vulgaris/foliaceus. This article aims to provide an overview of the importance of FcRn in antigen-presenting cells and its potential as a therapeutic target in autoimmune diseases, using efgartigimod as an example.

Original publication




Journal article





Publication Date





817 - 817