Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Non-deletional α(+)-thalassaemia is associated with a higher degree of morbidity and mortality than deletional forms of α(+)-thalassaemia. Screening for the common deletional forms of α-thalassaemia by Gap-PCR is widely practiced; however, the detection of non-deletional α-thalassaemia mutations is technically more labour-intensive and expensive, as it requires DNA sequencing. In addition, the presence of four very closely homologous alpha globin genes and the frequent co-existence of deletional forms of α-thalassaemia present another layer of complexity in the detection of these mutations. With growing evidence that non-deletional α-thalassaemia is relatively common in the UK, there is a demand for technologies which can quickly and accurately screen for these mutations. We describe a method utilising pyrosequencing for detecting the ten most common clinically significant non-deletional α-thalassaemia mutations in the UK. We tested 105 patients with non-deletional α-thalassaemia and found 100% concordance with known genotype as identified by Sanger sequencing. We found pyrosequencing to be simpler, more robust, quicker, and cheaper than conventional sequencing, making it a good choice for rapid and cost-effective diagnosis of patients with suspected non-deletional α-thalassaemia. The technique is also likely to help expedite prenatal diagnosis of pregnancies at risk of α-thalassaemia major.

Original publication

DOI

10.1007/s00277-010-1013-2

Type

Journal article

Journal

Ann Hematol

Publication Date

12/2010

Volume

89

Pages

1215 - 1221

Keywords

Base Sequence, Codon, Terminator, DNA Mutational Analysis, Genetic Testing, Genotype, Humans, Mutation, Poly A, Polyadenylation, Reproducibility of Results, Sensitivity and Specificity, alpha-Globins, alpha-Thalassemia