Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The variability in phenotype that occurs for so-called 'single-gene disorders' may be because of germline alterations in numerous primary and "modifier" genes. Within HNPCC families harbouring the same primary predisposing mutation, differences exist in the site of cancer, age of onset of disease symptoms and, consequently, survival until diagnosis of disease. The current study investigated a cohort of 129 individuals, from 13 different families, who harbour the identical nonsense mutation (C1528T) in the hMLH1 gene, predisposing them primarily to Lynch I syndrome. This cohort was screened for previously described polymorphisms in the glutathione-S-transferase genes, viz. GSTT1 and GSTM1. Male null carriers for both GSTT1 and GSTM1 were approximately three times more at risk of developing cancer at an earlier age when compared to non-null males. This work, particularly because of the relatively large "homogeneous" primary mutation cohort, provides evidence that genotypic changes distinct from the primary 'HNPCC-causing' mutation, influence the survival period until diagnosis of disease. It provides an impetus for expanding the study to include a wider range of candidate modifier genes. Such work may potentially lead to the development of individualised interval screening regimens for individuals with varying modifier genotypes--an attractive option in a resource-poor country.

Original publication




Journal article


Mutat Res

Publication Date





175 - 181


Adolescent, Adult, Aged, Child, Cohort Studies, Colorectal Neoplasms, Hereditary Nonpolyposis, Female, Genetic Predisposition to Disease, Genotype, Glutathione Transferase, Humans, Male, Middle Aged, Point Mutation, Polymorphism, Genetic