Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Systemic delivery of adenoviral vectors is a major goal in cancer gene therapy, but is currently prohibited by rapid hepatic uptake of virus following intravenous injection with levels of viable virus in the murine plasma typically falling to less than 0.1% after 30 min. We have used a surface-masking technique based on multivalent copolymers of poly(N-(2-hydroxypropyl)methacrylamide) to ablate all pathways of receptor-mediated infection, combined with dose modulation to achieve partial saturation of nonspecific uptake pathways. Polymer coating gave at least 100-fold decreased hepatic transgene expression at all doses and even high doses of coated virus (pc-virus) showed no weight loss or stimulation of serum transaminases. Low doses of virus and pc-virus (10(9) viral particles (vp)/mouse) were mainly captured by the liver (assessed by quantitative PCR), although higher doses led to greater fractional persistence in the plasma (measured after 30 min). Coated virus at a dose of 6 x 10(11) vp/mouse showed nearly 50% plasma circulation, representing a 3.5-fold greater area under the concentration-time curve (0-30 min) compared to unmodified virus. Such an increase in the bioavailability of adenovirus, coupled with substantial decreases in toxicity and unwanted transgene expression is an important step towards producing systemically available tumour-targeted viruses.

Original publication




Journal article


Gene Ther

Publication Date





1256 - 1263


Adenoviridae, Animals, Gene Expression, Gene Targeting, Genetic Therapy, Genetic Vectors, Injections, Intravenous, Liver, Mice, Neoplasms, Phagocytosis, Plasma, Polymers, Receptors, Virus, Recombination, Genetic, Transduction, Genetic, Transgenes, Tumor Cells, Cultured