Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Virtual and augmented reality have enjoyed increased attention in spine surgery. Preoperative planning, pedicle screw placement, and surgical training are among the most studied use cases. Identifying osseous structures is a key aspect of navigating a 3-dimensional virtual reconstruction. To automate the otherwise time-consuming process of labeling vertebrae on each slice individually, we propose a fully automated pipeline that automates segmentation on computed tomography (CT) and which can form the basis for further virtual or augmented reality application and radiomic analysis. METHODS: Based on a large public dataset of annotated vertebral CT scans, we first trained a YOLOv8m (You-Only-Look-Once algorithm, Version 8 and size medium) to detect each vertebra individually. On the then cropped images, a 2D-U-Net was developed and externally validated on 2 different public datasets. RESULTS: Two hundred fourteen CT scans (cervical, thoracic, or lumbar spine) were used for model training, and 40 scans were used for external validation. Vertebra recognition achieved a mAP50 (mean average precision with Jaccard threshold of 0.5) of over 0.84, and the segmentation algorithm attained a mean Dice score of 0.75 ± 0.14 at internal, 0.77 ± 0.12 and 0.82 ± 0.14 at external validation, respectively. CONCLUSION: We propose a 2-stage approach consisting of single vertebra labeling by an object detection algorithm followed by semantic segmentation. In our externally validated pilot study, we demonstrate robust performance for our object detection network in identifying individual vertebrae, as well as for our segmentation model in precisely delineating the bony structures.

Original publication

DOI

10.14245/ns.2347178.589

Type

Journal

Neurospine

Publication Date

03/2024

Volume

21

Pages

57 - 67

Keywords

Algorithms, Artificial intelligence, Deep learning, Machine learning, Spine