Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies. Methods: A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv. Results: 76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis. Conclusion: This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.

Original publication

DOI

10.1016/j.media.2025.103454

Type

Journal

Medical Image Analysis

Publication Date

01/04/2025

Volume

101