Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<div>AbstractPurpose:<p>Esophageal cancer carries a poor prognosis with a 5-year overall survival of less than 20%. Barrett’s esophagus increases the risk of esophageal adenocarcinoma. The aim of this study was to investigate the ability of EMI-137, a mesenchymal–epithelial transition factor (c-MET)-targeting optical imaging tracer, to detect dysplasia in Barrett’s esophagus.</p>Experimental Design:<p>c-MET expression in human esophageal tissue was investigated using Gene Expression Omnibus datasets, tissue microarrays, and Barrett’s esophagus biopsies. EMI-137 was tested in a dual xenograft mouse model bearing OE33 (c-MET high expression) and FLO-1 (c-MET low expression) tumors. Fluorescence molecular endoscopy was performed in a mouse model of Barrett’s-like metaplasia and dysplasia (L2-IL1β). Tumors and organs of interest were evaluated through <i>ex vivo</i> fluorescence imaging.</p>Results:<p><i>MET</i> mRNA expression analyses and c-MET immunostaining confirmed upregulation of c-MET in Barrett’s esophagus and esophageal adenocarcinoma compared with normal epithelium. There was strong accumulation of EMI-137 in OE33 xenografts 3 hours after injection, decreasing by more than 50% on coinjection of a 10-fold molar excess of unlabeled EMI-137. The target-to-background ratio at 3 hours after injection for OE33 and FLO-1 tumors was 10.08 and 1.42, respectively. Fluorescence molecular endoscopy of L2-IL1β mice showed uptake of EMI-137 in dysplastic lesions within Barrett’s esophagus with a target-to-background ratio of 1.9 <i>in vivo</i> and greater than 2 in <i>ex vivo</i> fluorescence imaging.</p>Conclusions:<p>EMI-137 accumulates in dysplastic lesions within Barrett’s esophagus and also in c-MET–positive esophageal adenocarcinoma. EMI-137 imaging has potential as a screening and surveillance tool for patients with Barrett’s esophagus and as a means to detecting dysplasia and esophageal adenocarcinoma.</p></div>

Original publication

DOI

10.1158/1078-0432.c.7611469

Type

Publication Date

06/01/2025