Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Reversible acetylation mediated by histone deacetylase (HDAC) influences a broad repertoire of physiological processes, many of which are aberrantly controlled in tumour cells. Since HDAC inhibition prompts tumour cells to enter apoptosis, small-molecule HDAC inhibitors have been developed as a new class of mechanism-based anticancer agent, many of which have entered clinical trials. While the clinical picture is evolving and the precise utility of HDAC inhibitors remains to be determined, it is noteworthy that certain tumour types undergo a favourable response, in particular haematological malignancies. Vorinostat (suberoylanilide hydroxamic acid) has been approved for treating cutaneous T-cell lymphoma in patients with progressive, persistent or recurrent disease. Here, we discuss developments in our understanding of molecular events that underlie the anticancer effects of HDAC inhibitors and relate this information to the emerging clinical picture for the application of HDAC inhibitors in haematological malignancies.

Original publication

DOI

10.1093/annonc/mdn792

Type

Journal article

Journal

Ann Oncol

Publication Date

08/2009

Volume

20

Pages

1293 - 1302

Keywords

Enzyme Inhibitors, Hematologic Neoplasms, Histone Deacetylase Inhibitors, Humans, Hydroxamic Acids, Vorinostat