Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The pRb tumour suppressor protein has a central role in coordinating early cell cycle progression. An important level of control imposed on pRb occurs through post-translational modification, for example, phosphorylation. We describe here a new level of regulation on pRb, mediated through the targeted methylation of lysine residues, by the methyltransferase Set7/9. Set7/9 methylates the C-terminal region of pRb, both in vitro and in cells, and methylated pRb interacts with heterochromatin protein HP1. pRb methylation is required for pRb-dependent cell cycle arrest and transcriptional repression, as well as pRb-dependent differentiation. Our results indicate that methylation can influence the properties of pRb, and raise the interesting possibility that methylation modulates pRb tumour suppressor activity.

Original publication

DOI

10.1038/onc.2009.511

Type

Journal article

Journal

Oncogene

Publication Date

22/04/2010

Volume

29

Pages

2357 - 2367

Keywords

Cell Cycle, Cell Differentiation, Cell Line, Tumor, Chromosomal Proteins, Non-Histone, Humans, Lysine, Methylation, Retinoblastoma Protein