Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: We determined the role of factor inhibiting hypoxia-inducible factor-1 in prostate cancer specimens. MATERIALS AND METHODS: A tissue microarray of 152 prostate cancers was constructed and stained for factor inhibiting hypoxia-inducible factor-1, hypoxia-inducible factor-1α and 2α, and glucose transporter 1 as a prototypical downstream target of hypoxia-inducible factor-1α. Correlation analysis was done between these variables, and between factor inhibiting hypoxia-inducible factor-1, and clinical and pathological variables, including prostate specific antigen as a surrogate of recurrence. RESULTS: Factor inhibiting hypoxia-inducible factor-1 was expressed in the cytoplasm and/or the nucleus in 86.5% of tumors, including exclusive cytoplasmic expression in 51.3% and exclusive nuclear expression in 5.3%. Any nuclear and exclusive expression of factor inhibiting hypoxia-inducible factor was associated with poor prognosis on univariate analysis (p = 0.007 and 0.042, respectively). On multivariate analysis men with nuclear expression in tumors were twice as likely to experience recurrence (p = 0.034). CONCLUSIONS: Factor inhibiting hypoxia-inducible factor-1 is widely expressed in prostate tumors. Its differential subcellular expression suggests that regulation of its expression is an important factor in the activity of the hypoxia-inducible factor pathway. Its modulation may help treat hypoxia-inducible factor driven aggressive prostate cancer.

Original publication




Journal article


J Urol

Publication Date





1513 - 1518


Cell Nucleus, Humans, Male, Mixed Function Oxygenases, Prognosis, Prostatic Neoplasms, Repressor Proteins, Survival Rate