A functionally distinct member of the DP family of E2F subunits.
Milton A., Luoto K., Ingram L., Munro S., Logan N., Graham AL., Brummelkamp TR., Hijmans EM., Bernards R., La Thangue NB.
E2F transcription factors regulate genes involved in cell-cycle progression. In mammalian cells, physiological E2F exists as an E2F/DP heterodimer. Currently, eight E2F and two DP subunits have been characterized. We report here the characterization of a new member of the DP family, DP-4. While DP-4 exhibits certain similarities with members of the DP family, it also possesses a number of significant differences. Thus, DP-4 forms a heterodimer with E2F subunits, binds to the E2F site and associates with pocket proteins including pRb. In contrast to DP-1, however, DP-4/E2F-1 complexes exhibit reduced DNA binding activity. Furthermore, DP-4 interferes with E2F-1-dependent transcription and delays cell-cycle progression. These results highlight an emerging complexity in the DP family of E2F subunits, and suggest that DP-4 may endow E2F heterodimers with distinct transcription properties.