Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The identification of alternatively spliced transcript variants specific to particular biological processes in tumours should increase our understanding of cancer. Hypoxia is an important factor in cancer biology, and associated splice variants may present new markers to help with planning treatment. A method was developed to analyse alternative splicing in exon array data, using probeset multiplicity to identify genes with changes in expression across their loci, and a combination of the splicing index and a new metric based on the variation of reliability weighted fold changes to detect changes in the splicing patterns. The approach was validated on a cancer/normal sample dataset in which alternative splicing events had been confirmed using RT-PCR. We then analysed ten head and neck squamous cell carcinomas using exon arrays and identified differentially expressed splice variants in five samples with high versus five with low levels of hypoxia-associated genes. The analysis identified a splice variant of LAMA3 (Laminin alpha 3), LAMA3-A, known to be involved in tumour cell invasion and progression. The full-length transcript of the gene (LAMA3-B) did not appear to be hypoxia-associated. The results were confirmed using qualitative RT-PCR. In a series of 59 prospectively collected head and neck tumours, expression of LAMA3-A had prognostic significance whereas LAMA3-B did not. This work illustrates the potential for alternatively spliced transcripts to act as biomarkers of disease prognosis with improved specificity for particular tissues or conditions over assays which do not discriminate between splice variants.

Original publication

DOI

10.1371/journal.pcbi.1000571

Type

Journal article

Journal

PLoS Comput Biol

Publication Date

11/2009

Volume

5

Keywords

Alternative Splicing, Carcinoma, Squamous Cell, Cell Line, Tumor, Cluster Analysis, Exons, Gene Expression Regulation, Neoplastic, Head and Neck Neoplasms, Humans, Hypoxia, Laminin, Oligonucleotide Array Sequence Analysis, Prognosis, RNA Splicing, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, DNA