Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The detection and segmentation of adherent eukaryotic cells from brightfield microscopy images represent challenging tasks in the image analysis field. This paper presents a free and open-source image analysis package which fully automates the tasks of cell detection, cell boundary segmentation, and nucleus segmentation in brightfield images. The package also performs image registration between brightfield and fluorescence images. The algorithms were evaluated on a variety of biological cell lines and compared against manual and fluorescence-based ground truths. When tested on HT1080 and HeLa cells, the cell detection step was able to correctly identify over 80% of cells, whilst the cell boundary segmentation step was able to segment over 75% of the cell body pixels, and the nucleus segmentation step was able to correctly identify nuclei in over 75% of the cells. The algorithms for cell detection and nucleus segmentation are novel to the field, whilst the cell boundary segmentation algorithm is contrast-invariant, which makes it more robust on these low-contrast images. Together, this suite of algorithms permit brightfield microscopy image processing without the need for additional fluorescence images. © 2011 Springer-Verlag.

Original publication




Journal article


Machine Vision and Applications

Publication Date





607 - 621