Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In order to enhance DNA triple helix stability synthetic oligonucleotides have been developed that bear amino groups on the sugar or base. One of the most effective of these is bis-amino-U (B), which possesses 5-propargylamino and 2'-aminoethoxy modifications. Inclusion of this modified nucleotide not only greatly enhances triplex stability, but also increases the affinity for related sequences. We have used a restriction enzyme protection, selection and amplification assay (REPSA) to isolate sequences that are bound by the heavily modified 9-mer triplex-forming oligonucleotide B(6)CBT. The isolated sequences contain A(n) tracts (n = 6), suggesting that the 5'-end of this TFO was responsible for successful triplex formation. DNase I footprinting with these sequences confirmed triple helix formation at these secondary targets and demonstrated no interaction with similar oligonucleotides containing T or 5-propargylamino-dU.

Original publication

DOI

10.1093/nar/gkr1119

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

04/2012

Volume

40

Pages

3753 - 3762

Keywords

Base Sequence, Binding Sites, DNA, DNA Footprinting, Deoxyribonuclease I, Deoxyribonucleases, Type II Site-Specific, Deoxyuridine, Oligonucleotides, Uridine