Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A method has been developed to attach 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen to the 5 position of thymine bases during solid-phase oligonucleotide synthesis. UV irradiation of triplex-forming oligonucleotides (TFOs) containing internally attached psoralens produces photoadducts at TpA steps within target duplexes, thus relaxing the constraints on selection of psoralen target sequences. Photoreaction of TFOs containing two psoralens, located at the 5'- and 3'-ends, has been used to create double-strand cross-links (triplex staples) at both termini of the TFO. Such complexes have no free single-stranded ends. TFOs containing 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen, 3-methyl-2-aminopyridine, and 5-(3-aminoprop-2-ynyl)deoxyuridine formed photoadducts with target duplexes under near-physiological conditions.

Original publication

DOI

10.1021/bc0601875

Type

Journal article

Journal

Bioconjug Chem

Publication Date

11/2006

Volume

17

Pages

1561 - 1567

Keywords

Cross-Linking Reagents, DNA, Electrophoresis, Agar Gel, Ficusin, Molecular Structure, Nucleic Acid Conformation, Nucleic Acid Denaturation, Oligonucleotides, Photosensitizing Agents, Transition Temperature