Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have used oligonucleotides containing molecular beacons to determine melting profiles for intramolecular DNA duplexes, triplexes and quadruplexes (tetraplexes). The synthetic oligonucleotides used in these studies contain a fluorophore (fluorescein) and quencher (methyl red) attached either to deoxyribose or to the 5 position of dU. In the folded DNA structures the fluorophore and quencher are in close proximity and the fluorescence is quenched. When the structures melt, the fluorophore and quencher are separated and there is a large increase in fluorescence. These experiments were performed in a Roche LightCycler; this requires small amounts of material (typically 4 pmol oligonucleotide) and can perform 32 melting profiles in parallel. We have used this technique to compare the stability of triplexes containing different base analogues and to confirm the selectivity of a triplex-binding ligand for triplex, rather than duplex, DNA. We have also compared the melting of inter- and intramolecular quadruplexes.


Journal article


Nucleic Acids Res

Publication Date





Azo Compounds, Base Sequence, DNA, Fluorescein, Fluorescence, Fluorescent Dyes, G-Quadruplexes, Hot Temperature, Hydrogen-Ion Concentration, Kinetics, Ligands, Nucleic Acid Denaturation, Oligodeoxyribonucleotides