Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

DNase I footprinting has been used to study the formation of parallel triplexes at oligopurine target sequences which are interrupted by pyrimidines at regular intervals. TA interruptions are targeted with third strand oligonucleotides containing guanine, generating G x TA triplets, while CG base pairs are targeted with thymine, forming T x CG triplets. We have attempted to optimize the stability of these complexes by varying the base composition and sequence arrangement of the target sites, and by replacing the third strand thymines with the positively charged analogue 5-(1-propargylamino)dU (U(P)). For the target sequence (AAAT)(5)AA, in which pyrimidines are positioned at every fourth residue, triplex formation with TG-containing oligonucleotides is only detected in the presence of a triplex-binding ligand, though stable triplexes were detected at the target site (AAAAAT)(3)AAAA. Triplex stability at targets containing pyrimidines at every fourth residue is increased by introducing guanines into the duplex repeat unit using the targets (AGAT)(5)AA and (ATGA)(5)AA. In contrast, placing C(+) x GC triplets on the 5'-side of G x TA, using the target (AGTA)(5)TT, produces complexes of lower stability. We have attempted further to increase the stability of these complexes by using the positively charged thymine base analogue U(P), and have shown that (TU(P)TG)(5)TT forms a more stable complex with target (AAAT)(5)AA than the unmodified third strand, generating a footprint in the absence of a triplex-binding ligand. Triplex formation at (AGTA)(5)AA is improved by using the modified oligonucleotide (TCGU(P))(5)TT, generating a complex in which the charged triplets C(+) x GC and U(P) x AT alternate with uncharged triplets. In contrast, placing U(P) x AT triplets adjacent to C(+) x GC, using the third strand oligonucleotide (U(P)CGT)(5)TT, reduces triplex formation, while the third strand with both substitutions, (U(P)CGU(P))(5)TT, produces a complex with intermediate stability. It appears that, although adjacent U(P) x AT triplets form stable triplexes, placing U(P) x AT adjacent to C(+) x GC is unfavorable. Similar results were obtained with fragments containing CG inversions within the oligopurine tract, though triplexes at (AAAAAC)(3)AA were only detected in the presence of a triplex-binding ligand. Placing C(+) x GC on the 5'-side of T x CG triplets also reduces triplex formation, while a 3'-C(+) x GC produces complexes with increased stability.

Type

Journal article

Journal

Biochemistry

Publication Date

12/10/1999

Volume

38

Pages

13747 - 13758

Keywords

Adenine, Cytosine, DNA, DNA Footprinting, Deoxyribonuclease I, Deoxyuridine, Guanine, Macromolecular Substances, Nucleic Acid Conformation, Oligodeoxyribonucleotides, Protons, Pyrimidine Nucleotides, Thymine