Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Barnase is found to have a series of subsites for binding its substrates that confers large rate enhancements. Ribonucleotide substrates of the type Zp0Gp1Xp2Y have been synthesized, where p is phosphate, X, Y, and Z are nucleosides, and G is guanosine. G occupies the primary specificity site. The most important subsite is for p2, followed by that for Y. There appears to be no subsite for the Z or p0 positions. Occupation of the subsite for p2 gives rise to a 1000-fold increase in kcat/Km, composed of a 100-fold increase in kcat and a 10-fold decrease in Km. The Y subsite gives rise to further 20-fold increase in kcat/Km. Rates approaching diffusion control for kcat/Km are observed. kcat for the dinucleotide monophosphate GpU = 0.55 s-1, and Km = 240 microM; this compares with 53 s-1 and 20 microM for GpUp, and 3.3 x 10(3) s-1 and 17 microM for GpApA (the best substrate tested). Cleavage occurs at the 3'-phosphate of guanosine in all cases. There are differences in base specificity at the two subsites for X and Y downstream of the scissile bond. The binding energies of different substrates have been analyzed using thermodynamic cycles. These show that the contributions of the X and Y sites are nonadditive.

Type

Journal article

Journal

Biochemistry

Publication Date

21/07/1992

Volume

31

Pages

6390 - 6395

Keywords

Bacillus, Bacterial Proteins, Binding Sites, Kinetics, Oligonucleotides, Ribonucleases, Structure-Activity Relationship, Substrate Specificity, Thermodynamics