Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the present study, we use the fluorescent DNA base analog tCå to investigate the thermal stability of a small DNA hexagon and the thermodynamie factors that govern the formation of such a structure. The DNA molecule is becoming increasingly popular as a material for bottom-up construction of nanostructures; however, relatively little attention has been given to the thermodynamics of such biomacromolecule-based constructs. With the goal of increasing information density and structural complexity, the size of the nanoarchitectures decreases and, more importantly, the fine structure is becoming more detailed. In this process the thermal stability and formation of unwanted byproducts will become critical features to consider in the design and assembly of such structures. Using tCå as a fluorescent probe in fluorescence monitored DNA melting allows for individually observing the denaturing of each of the six 10-mer sides in the pseudohexagonal multicomponent system. Experimental results demonstrate that the ring-opening of the cyclized hexamer is virtually exclusive to one side and that the stability of this side is increased as a result of the cyclization. Moreover, a theoretical model describing the formation and melting of the nanostructure is presented. The results show that the cyclized structure is thermodynamically favored over linear polymeric structures under the conditions and concentrations used for the self-assembly. © 2009 American Chemical Society.

Original publication

DOI

10.1021/jp808239a

Type

Journal article

Journal

Journal of Physical Chemistry C

Publication Date

16/04/2009

Volume

113

Pages

5941 - 5946