Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Molecular diagnostics is progressing from low-throughput, heterogeneous, mostly manual technologies to higher throughput, closed-tube, and automated methods. Fluorescence is the favored signaling technology for such assays, and a number of techniques rely on energy transfer between a fluorophore and a proximal quencher molecule. In these methods, dual-labeled probes hybridize to an amplicon and changes in the quenching of the fluorophore are detected. We describe a new technology that is simple to use, gives highly specific information, and avoids the major difficulties of the alternative methods. It uses a primer with an integral tail that is used to probe an extension product of the primer. The probing of a target sequence is thereby converted into a unimolecular event, which has substantial benefits in terms of kinetics, thermodynamics, assay design, and probe reliability.

Original publication




Journal article


Nat Biotechnol

Publication Date





804 - 807


BRCA2 Protein, Base Sequence, DNA Primers, Fluorescence, Kinetics, Molecular Probes, Neoplasm Proteins, Polymerase Chain Reaction, Thermodynamics, Transcription Factors