Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Site-directed mutants of the herpes simplex virus type 1 uracil-DNA glycosylase lacking catalytic activity have been used to probe the substrate recognition of this highly conserved and ubiquitous class of DNA-repair enzyme utilizing surface plasmon resonance. The residues aspartic acid-88 and histidine-210, implicated in the catalytic mechanism of the enzyme (Savva, R., McAuley-Hecht, K., Brown, T., and Pearl, L. (1995) Nature 373, 487-493; Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E. and Tainer, J. A. (1996) Nature 384, 87-92) were separately mutated to asparagine to allow investigations of substrate recognition in the absence of catalysis. The mutants were shown to be correctly folded and to lack catalytic activity. Binding to single- and double-stranded oligonucleotides, with or without uracil, was monitored by real-time biomolecular interaction analysis using surface plasmon resonance. Both mutants exhibited comparable rates of binding and dissociation on the same uracil-containing substrates. Interaction with single-stranded uracil-DNA was found to be stronger than with double-stranded uracil-DNA, and the binding to Gua:Ura mismatches was significantly stronger than that to Ade:Ura base pairs suggesting that the stability of the base pair determines the efficiency of interaction. Also, there was negligible interaction between the mutants and single- or double-stranded DNA lacking uracil, or with DNA containing abasic sites. These results suggest that it is uracil in the DNA, rather than DNA itself, that is recognized by the uracil-DNA glycosylases.


Journal article


J Biol Chem

Publication Date





45 - 50


Catalysis, DNA Glycosylases, Kinetics, Mutagenesis, Site-Directed, N-Glycosyl Hydrolases, Protein Structure, Tertiary, Recombinant Proteins, Simplexvirus, Substrate Specificity, Uracil-DNA Glycosidase