Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The crystal structure refinement of the synthetic dodecamer d(CGCGAASSCGCG), where S = 4'-thio-2'-deoxythymidine, has converged at R=0.201 for 2605 reflections with F > 2sigma(F) in the resolution range 8.0-2.4 A for a model consisting of the dodecamer duplex and 66 water molecules. A comparison of its structure with that of the native dodecamer d(CGCGAATTCGCG) has revealed that the major differences between the two structures is a change in the conformation of the sugar-phosphate backbone in the regions at and adjacent to the positions of the modified nucleosides. Examination of the fine structural parameters for each of the structures reveals that the thiosugars adopt a C3'-exo conformation in d(CGCGAASSCGCG), rather than the approximate C1'-exo conformation found for the analogous sugars in the structure of d(CGCGAATTCGCG). The observed differences in structure between the two duplexes may help to explain the enhanced resistance to nuclease digestion of synthetic oligonucleotides containing 4'-thio-2'-deoxynucleotides.


Journal article


Nucleic Acids Res

Publication Date





951 - 961


Base Sequence, Crystallization, Crystallography, X-Ray, DNA, Molecular Sequence Data, Molecular Structure, Thionucleotides, Thymidine