Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deformable image registration is an important tool in medical image analysis. In the case of lung computed tomography (CT) registration there are three major challenges: large motion of small features, sliding motions between organs, and changing image contrast due to compression. Recently, Markov random field (MRF)-based discrete optimization strategies have been proposed to overcome problems involved with continuous optimization for registration, in particular its susceptibility to local minima. However, to date the simplifications made to obtain tractable computational complexity reduced the registration accuracy. We address these challenges and preserve the potentially higher quality of discrete approaches with three novel contributions. First, we use an image-derived minimum spanning tree as a simplified graph structure, which copes well with the complex sliding motion and allows us to find the global optimum very efficiently. Second, a stochastic sampling approach for the similarity cost between images is introduced within a symmetric, diffeomorphic B-spline transformation model with diffusion regularization. The complexity is reduced by orders of magnitude and enables the minimization of much larger label spaces. In addition to the geometric transform labels, hyper-labels are introduced, which represent local intensity variations in this task, and allow for the direct estimation of lung ventilation. We validate the improvements in accuracy and performance on exhale-inhale CT volume pairs using a large number of expert landmarks.

Original publication

DOI

10.1109/TMI.2013.2246577

Type

Journal article

Journal

IEEE Trans Med Imaging

Publication Date

07/2013

Volume

32

Pages

1239 - 1248

Keywords

Algorithms, Esophageal Neoplasms, Humans, Image Processing, Computer-Assisted, Lung, Lung Neoplasms, Markov Chains, Tomography, X-Ray Computed