Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

With the aim to identify unconventional DNA polymerases from human cells, we have set up a special assay to fractionate HeLa extracts based on the ability (i) to bypass DNA lesions, (ii) to be resistant to aphidicolin and an inhibitory antibody against pol alpha and (iii) to be non-responsive to proliferating cell nuclear antigen. After eight different chromatographic steps, an aphidicolin-resistant DNA polymerase activity was obtained that was able to utilize either undamaged or abasic sites-containing DNA with the same efficiency. Biochemical characterization and immunoblot analysis allowed its identification as the human homologue of DNA polymerase theta (hpol theta), whose cDNA has been cloned by homology with the mus308 gene of Drosophila melanogaster but still awaited detailed biochemical characterization. The purified hpol theta was devoid of detectable helicase activity, possessed a 3'-->5' exonuclease activity and showed biochemical properties clearly distinct from any other eukaryotic DNA polymerase known so far. Misincorporation and fidelity assays showed that: (i) hpol theta was able to catalyze efficiently DNA synthesis past an abasic site; and (ii) hpol theta showed high fidelity. Our findings are discussed in light of the proposed physiological role of hpol theta.

Original publication

DOI

10.1016/S0022-2836(02)00325-X

Type

Journal article

Journal

J Mol Biol

Publication Date

31/05/2002

Volume

319

Pages

359 - 369

Keywords

DNA, DNA Replication, DNA-Directed DNA Polymerase, Exodeoxyribonucleases, HeLa Cells, Humans, Kinetics, Mutagenesis, Templates, Genetic, Thermodynamics