Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nitric oxide (•NO) is a very effective radiosensitizer of hypoxic mammalian cells, at least as efficient as oxygen in enhancing cell death in vitro. •NO may induce cell death through the formation of base lesions which are difficult to repair, and if they occur within complex clustered damage common to ionizing radiation, they may lead to replication-induced DNA strand breaks. It has previously been shown that 8-azaguanine and xanthine result from the reaction of guanine radicals with nitric oxide. We have now shown that adenine radicals also react with •NO to form hypoxanthine and 8-azaadenine. Cells irradiated in exponential growth in the presence of •NO are twice as radiosensitive compared to those irradiated in anoxia alone, whereas confluent cells are less radiosensitive to •NO. In addition, the numbers of DNA double strand breaks observed as γH2AX staining following radiosensitization by •NO, are higher in exponential cells than in confluent cells. DNA damage, detected as 53BP1 foci, is also higher in HF-19 cells expressing Cyclin A, a marker for cells in S and G2 phases of the cell cycle, following radiosensitization by •NO. RAD51 foci are highest in V79-4 cells irradiated in the presence of •NO compared to in anoxia, 24 h after radiolysis. This work presents evidence that radiosensitization of cells by •NO is in part through the formation of specific DNA damage, difficult to repair, which in dividing cells may induce the formation of stalled replication forks and as a consequence replication-induced DNA strand breaks which may lead to cell death. © 2013 Elsevier Inc. All rights reserved.

Original publication




Journal article


Nitric Oxide - Biology and Chemistry

Publication Date





47 - 55