Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Medical images pose a major challenge for image analysis: often they have poor signal-to-noise, necessitating smoothing; yet such smoothing needs to preserve the boundaries of regions of interest and small features such as mammogram microcalcifications. We show how circular integral invariants (II) may be adapted for feature-preserving smoothing to facilitate segmentation. Though II is isotropic, we show that it leads to considerably less feature deterioration than Gaussian blurring and it improves segmentation of regions of interest as compared to anisotropic diffusion, particularly for hierarchical contour based segmentation methods.

Original publication




Conference paper

Publication Date





4018 - 4021


Female, Humans, Image Enhancement, Magnetic Resonance Imaging, Mammography, Models, Theoretical, Normal Distribution, Signal-To-Noise Ratio