Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Matching occluded and noisy shapes is a frequently encountered problem in vision and medical image analysis and more generally in computer vision. To keep track of changes inside breast, it is important for a computer aided diagnosis system (CAD) to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants and geodesic distance yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants are used on 2D planar shapes to describe the shape boundary. However, they provide no information about where a particular feature on the boundary lies with regard to overall shape structure. On the other hand, eccentricity transforms can be used to match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines both the boundary signature of shape obtained from integral invariants and structural information from the eccentricity transform to yield improved results.

Original publication

DOI

10.1109/EMBC.2013.6610695

Type

Conference paper

Publication Date

2013

Volume

2013

Pages

5099 - 5102

Keywords

Algorithms, Humans, Image Interpretation, Computer-Assisted, Mammography, Pattern Recognition, Automated