Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Click DNA ligation promises an alternative to the current enzymatic approaches for DNA assembly, with the ultimate goal of using efficient chemical reactions for the total chemical synthesis and assembly of genes and genomes. Such an approach would enable the incorporation of various chemically modified bases throughout long stretches of DNA, a feat not possible with current polymerase-based methods. An unequivocal requirement for this approach is the biocompatibility of the resulting triazole-linked DNA. The correct function of this unnatural DNA linker in human cells is demonstrated here by using a click-linked gene encoding the fluorescent protein mCherry. Reverse transcription of mRNA isolated from these cells and subsequent sequencing of the mCherry cDNA shows error-free transcription. Nucleotide excision repair (NER) is shown to not play a role in the observed biocompatibility by using a NER-deficient human cell line. This is the first example of a non-natural DNA linker being functional in a eukaryotic cell.

Original publication




Journal article


Angew Chem Int Ed Engl

Publication Date





2362 - 2365


DNA ligation, click chemistry, gene technology, nucleic acids, synthetic biology, Cell Line, Click Chemistry, DNA, DNA Repair, Humans, Luminescent Proteins, Synthetic Biology, Transcription, Genetic, Triazoles