Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Segmentation is typically the first step in computer-aided-detection (CADe). The second step is false positive reduction which usually involves computing a large number of features with thresholds set by training over excessive data set. The number of false positives can, in principle, be reduced by extensive noise removal and other forms of image enhancement prior to segmentation. However, this can drastically affect the true positive results and their boundaries. We present a post-segmentation method to reduce the number of false positives by using a diffusion scale space. The method is illustrated using Integral Invariant scale space, though this is not a requirement. It is quite general, does not require any prior information, is fast and easy to compute, and gives very encouraging results. Experiments are performed both on intensity mammograms as well as on Volpara® density maps. © 2014 Springer International Publishing.

Original publication

DOI

10.1007/978-3-319-07887-8_83

Type

Conference paper

Publication Date

01/01/2014

Volume

8539 LNCS

Pages

597 - 605