Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The coexistence of cutaneous and extra-cutaneous malignancies within one family could be explained by shared genetic mechanisms such as common tumor suppressor gene mutations or oncogene activation, as well as mutations in DNA repair genes. Hereditary non-polyposis colorectal cancer syndrome (HNPCC) and its variant Muir-Torre syndrome (MTS) are caused by germline DNA mismatch repair gene mutations. Colonic and endometrial tumors from HNPCC patients exhibit microsatellite instability (MSI), as do sebaceous lesions in MTS. We recruited individuals from cancer prone families to determine if MSI is found in benign and malignant skin lesions and to assess whether MSI in the skin is predictive of genomic instability with susceptibility to tumors characteristic of HNPCC. One hundred and fifteen benign, dysplastic, and malignant skin lesions from 39 cancer prone families were analyzed. Thirteen benign skin lesions from three individuals belonging to two HNPCC pedigrees showed MSI. No mutations in hMSH2 and hMLH1 were found in two of the three individuals with RER + skin lesions. We found MSI in non-sebaceous non-dysplastic skin lesions in HNPCC pedigrees. MSI was not found in skin lesions within other family cancer syndromes. These results have important clinical implications as the detection of MSI in prevalent readily accessible skin lesions could form the basis of noninvasive screening for HNPCC families. It may also be a valuable tool in the search for new mismatch repair genes.

Original publication




Journal article


J Invest Dermatol

Publication Date





901 - 905


Adenoma, Colorectal Neoplasms, Hereditary Nonpolyposis, Female, Humans, Male, Microsatellite Repeats, Sebaceous Gland Neoplasms, Skin