Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UNLABELLED: A prominent feature of many human cancers is oncogene-driven activation of the DNA damage response (DDR) during early tumorigenesis. It has been shown previously that noninvasive imaging of the phosphorylated histone H2A variant H2AX, γH2AX, a DNA damage signaling protein, is possible using (111)In-labeled anti-γH2AX antibody conjugated to the cell-penetrating peptide transactivator of transcription (TAT). The purpose of this study was to investigate whether (111)In-anti-γH2AX-TAT detects the DDR during mammary oncogenesis in BALB-neuT mice. METHODS: Mammary fat pads from BALB-neuT and wild-type mice (age, 40-106 d) were immunostained for γH2AX. (111)In-anti-γH2AX-TAT or a control probe was administered intravenously to BALB-neuT mice. SPECT was performed weekly and compared with tumor detection using palpation and dynamic contrast-enhanced MR imaging. RESULTS: γH2AX expression was elevated in hyperplastic lesions in the mammary fat pads of BALB-neuT mice aged 76-106 d, compared with normal fat pads from younger mice and carcinomas from older mice (13.5 ± 1.2 γH2AX foci/cell vs. 5.2 ± 1.5 [P < 0.05] and 3.4 ± 1.1 [P < 0.001], respectively). Serial SPECT imaging revealed a 2.5-fold increase in (111)In-anti-γH2AX-TAT accumulation in the mammary fat pads of mice aged 76-106 d, compared with control probe (P = 0.01). The median time to detection of neoplastic lesions by (111)In-anti-γH2AX-TAT (defined as >5% injected dose per gram of tissue) was 96 d, compared with 120 and 131 d for dynamic contrast-enhanced MR imaging and palpation, respectively (P < 0.001). CONCLUSION: DDR imaging using (111)In-anti-γH2AX-TAT identified mammary tumors significantly earlier than MR imaging. Imaging the DDR holds promise for the detection of preneoplasia and as a technique for screening cancer-prone individuals.

Original publication




Journal article


J Nucl Med

Publication Date





2026 - 2031


BALB-NeuT, breast cancer, early diagnosis, molecular imaging, γH2AX, Animals, DNA Damage, Disease Progression, Female, Image Processing, Computer-Assisted, Immunoconjugates, Magnetic Resonance Imaging, Mammary Neoplasms, Experimental, Mice, Mice, Inbred BALB C, Precancerous Conditions, Radiopharmaceuticals, Tissue Distribution, Tomography, Emission-Computed, Single-Photon