Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

An approach to path-planning around smooth obstacles that exploits visually derived geometry is proposed. A moving robot can scan the silhouette or apparent contour of an obstacle and estimate a minimum length path. This is done by seeking geodesics which can be extrapolated smoothly, around the obstacle and towards the goal. Preliminary implementation of this idea uses a real-time visual contour tracker running at 16 Hz, with a camera mounted on an Adept robot arm. The camera first dithers to generate visual motion, a safe path is estimated, and the robot steers the camera around the obstacle with a clearance of a few millimeters.

Type

Conference paper

Publication Date

01/01/1991

Volume

3

Pages

2490 - 2495