Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We demonstrate a new method to reversibly cross-link DNA-nanoparticle dimers, trimers, and tetramers using light as an external stimulus. A DNA interstrand photo-cross-linking reaction is possible via ligation of a cyano-vinyl carbazole nucleoside with an opposite thymine when irradiated at 365 nm. This reaction results in nanoparticle assemblies that are not susceptible to DNA dehybridization conditions. The chemical bond between the two complementary DNA strands can be reversibly broken upon light irradiation at 312 nm. This is the first example of reversible ligation in DNA-nanoparticle assemblies using light and enables new developments in the field of programmed nanoparticle organization.

Original publication

DOI

10.1021/jacs.5b05683

Type

Journal article

Journal

J Am Chem Soc

Publication Date

29/07/2015

Volume

137

Pages

9242 - 9245

Keywords

Base Sequence, DNA, Gold, Metal Nanoparticles, Models, Molecular, Nucleic Acid Conformation