Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Resistance to platinum- and taxane-based chemotherapy remains a major clinical impediment to effective management of epithelial ovarian cancer (EOC). To gain insights into resistance mechanisms, we compared gene and confirmed expression patterns of novel EOC cell lines selected for paclitaxel and carboplatin resistance. Here, we report that resistance can be conferred by downregulation of the Polo-like kinase Plk2. Mechanistic investigations revealed that downregulation occurred at the level of transcription via associated DNA methylation of the CpG island in the Plk2 gene promoter in cell lines, primary tumors, and patient sera. Inhibitory RNA (RNAi)-mediated knockdown and ectopic overexpression established a critical functional role for Plk2 in determining apoptotic sensitivity to paclitaxel and carboplatin. In drug-resistant human EOC cell lines, Plk2 promoter methylation varied with the degree of drug resistance and transcriptional silencing of the promoter. RNAi-dependent knockdown of Plk2 abrogated G(2)-M cell-cycle blockade by paclitaxel, conferring resistance to both paclitaxel and platinum. Conversely, ectopic expression of Plk2 restored sensitivity to G(2)-M cell-cycle blockade and cytotoxicity triggered by paclitaxel. In clinical cases, DNA methylation of the Plk2 CpG island in tumor tissue was associated with a higher risk of relapse in patients treated postoperatively with carboplatin and paclitaxel (P = 0.003). This trend was also reflected in the analysis of matched serum samples. Taken together, our results implicate Plk2 as a clinically important determinant of chemosensitivity, in support of the candidacy of Plk2 as a theranostic marker to inform EOC management.

Original publication

DOI

10.1158/0008-5472.CAN-10-2048

Type

Journal article

Journal

Cancer Res

Publication Date

01/05/2011

Volume

71

Pages

3317 - 3327

Keywords

Carboplatin, Cell Division, Cell Line, Tumor, Cisplatin, CpG Islands, DNA Methylation, Down-Regulation, Drug Resistance, Neoplasm, Female, G2 Phase, Gene Silencing, Humans, Ovarian Neoplasms, Paclitaxel, Protein-Serine-Threonine Kinases, RNA Interference, Transcriptional Activation, Transfection